Only the Really Big Ideas
Can Take Constant Change in their Stride
Disclaimer
This document is intended exclusively for physicians and is not intended for laypersons.

Information on the products and procedures contained in this document is of a general nature and does not represent and does not constitute medical advice or recommendations. Because this information does not purport to constitute any diagnostic or therapeutic statement with regard to any individual medical case, each patient must be examined and advised individually, and this document does not replace the need for such examination and/or advice in whole or in part.

Information contained in this document was gathered and compiled by medical experts and qualified Zimmer personnel. The information contained herein is accurate to the best knowledge of Zimmer and of those experts and personnel involved in its compilation. However, Zimmer does not assume any liability for the accuracy, completeness or quality of the information in this document, and Zimmer is not liable for any losses, tangible or intangible, that may be caused by the use of this information.
There are few implants that have made history and are still used to this day. The Original Müller Straight Stem prosthesis falls into this category. Since its creation in 1977, the Original M. E. Müller Straight Stem prosthesis has remained essentially unchanged; very good 20-year results confirm its well-founded concept. In 26 years (1977–2003), the Original M. E. Müller Straight Stem has been implanted over a million times. It is not surprising that the Müller Straight Stem prosthesis is used all over the world, as its design has long since stood the test of time. Its impressive ease of implantation and its high tolerance of errors have set standards in the field of hip replacement, so that orthopedic surgeons regard it as the epitome of a safe and tested implant.
Original M.E. Müller Straight Stem
The System

Müller Straight Stem, standard

Müller Straight Stem, lateral

CDH Stem
The Biomechanical Concept
Dual Anchorage for Maximum Stability

Self-locking as Anchorage Principle
The Straight Stem prosthesis is anchored by the body of the prosthesis locking in the femur. The aim is form-fitting contact in the frontal plane. Additional locking is frequently achieved in the sagittal plane through the curvature of the femur. Together with the bone cement, these anchorage components ensure secure fixation. In case of a valgus hip, the stem locks at three points in the frontal plane: usually medially at the calcar and at the tip of the prosthesis, and, thanks to the 6° taper, laterally in the metaphysis.

Safety through Rotatory Stability
Thanks to its flat cross-section, the prosthesis locks itself in the bone. Through this, rotatory stability is achieved, which is additionally secured by the dorsal/ventral cement mantle. The high degree of rigidity of the Straight Stem protects the cement against fatigue fracture and the shattering that results from this, thus protecting the prosthesis from premature loosening.

Bond with the Cement
The fine-blasted surface of the Straight Stem provides the cement with very favorable conditions for adhesion. The fluted structure of the stem, with the two particularly marked longitudinal grooves a/p in the stem axis, enables very good cement adhesion. The small proximal collar serves to compress the cement, prevents the stem from sinking into the cement, and, together with the fine-blasted surface of the Straight Stem, it achieves a very stable anchorage of the implant.
The Design of the Prosthesis
Ahead of its Time

Uniform Stem Geometry in the Straight Stem Range
The Straight Stem prosthesis is characterized by its simple, clear geometry. It has a taper angle of 6° and a constant medial contour in relation to the center of rotation that remains consistent across all sizes. The distance between the stem axis and the center of rotation increases evenly with increasing size. This facilitates preoperative planning, as does its constant CCD angle of 135°.

Stem Design for Ease of Implantation
The Straight Stem is easy to implant, and can therefore be mastered after a decidedly short learning curve. Thanks to its proximal chamfer, the greater trochanter does not have to be opened up in a heavily lateral direction right into the muscle insertions during reaming and subsequent insertion of the prosthesis, as is the case with many other cemented prostheses. Due to its straight shape, the stem is positioned neutrally; it automatically finds the middle axis, and a varus or valgus position is avoided. Thanks to its longitudinal structure, the geometry of the Straight Stem prosthesis allows extraction without great loss of bone and without fracture in the case of revision surgery.

Offset Options through Standard and Lateral Versions
For more than 20 years, the Straight Stem prosthesis has been available with an additional offset option, the lateralized Straight Stem prosthesis. The lateralized Straight Stem prosthesis, with its 8 mm larger offset (neck displaced by 8 mm in medial direction) results in a lateralization of the femur. It is used for patients in whom the implantation of a standard version would result in an undesired medialization of the femur. This modern concept allows reconstruction of the anatomical conditions.
Maximum Spectrum of Indications
Due to the extensive range of sizes and the availability of standard and lateral versions, the Original M. E. Müller Straight Stem covers almost the entire spectrum of indications, including operations on less markedly dysplastic hips and revisions. Thanks to its flat body, the prosthesis can also be implanted in cases of marked antetorsion and strong antecurvation of the femur. Because of the immediate stability directly after the operation, the Straight Stem prosthesis is recommended for osteoporotic bone. The Original M. E. Müller Straight Stem has proved itself in patients of all age groups.

CDH – Straight Stem Model for Dysplasia
In the case of small hip conditions, particularly in cases of dysplastic acetabula, congenital dislocation of the hip and narrow medullary cavities, the CDH (Congenital Dysplastic Hip) prosthesis – the “small Straight Stem” – is indicated.

Contraindications
Revision cases with extensive proximal bone loss represent a contraindication for the Straight Stem.
The Instruments
Concentrating on the Essentials

Modern, Compact Set of Instruments
The highly functional instruments are designed to match the simple, standardized surgical technique. For decades, these instruments have been standard equipment for hip operations, and are used in many prosthetic systems.

The new and practical synthetic tray accommodates the ingenious instruments for the Original M. E. Müller Straight Stem. The tray can be assembled to suit the wishes and requirements of the surgeon and the surgical staff.
Instructive Preoperative Planning
As a simple but effective aid for the optimization of orthopedic surgery, preoperative planning has been used with success since the 1960s. The new template facilitates preoperative planning, which is an important factor in short-term and long-term success of hip operations.
The Long-Term Results
Convincing Proof of Integrity

The excellent results from long-term clinical studies are the best arguments for the Original M. E. Müller Straight Stem.

Clinical Results

<table>
<thead>
<tr>
<th>Year</th>
<th>Author</th>
<th>Published in</th>
<th>Implant/ no. of hips</th>
<th>Follow-up (all facts)</th>
<th>Combined survival rate, stem (all facts)</th>
<th>Survival rate, stem (all facts)</th>
<th>Survival rate, stem (aseptic loosening)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>Riede et al.</td>
<td>The M. E. Müller straight stem prosthesis: 15 years follow up. Survivorship and clinical results</td>
<td>44</td>
<td>15 years</td>
<td></td>
<td>94 %</td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>Schweizer et al.</td>
<td>Five-year results of two cemented hip stem models each made of two different alloys. Arch Orthop Trauma Surg (2005); 125: 80–86</td>
<td>161</td>
<td>5 years</td>
<td></td>
<td>82.5 %</td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>Kirschner</td>
<td>20 years of primary hip replacement using M. E. Müller Straight Stem. Paper 1232, EFORT, Helsinki, June 2003</td>
<td>200</td>
<td>20 years</td>
<td></td>
<td>82.5 %</td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>Ochsner</td>
<td>Die Hüfttotalprothese, Implantationstechnik und lokale Kompilaktionen. Springer, Berlin, 2003</td>
<td>401</td>
<td>15 years</td>
<td></td>
<td>94.3 %</td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>Schweizer et al.</td>
<td>Ten-year follow-up of primary straight stem prosthesis (MEM) made of titanium or cobalt chromium alloy. Arch Orthop Trauma Surg (2003); 123: 353–356</td>
<td>433</td>
<td>10 years</td>
<td></td>
<td>98.2%(CoCr) 80.9%(Ti)</td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>Malchau et al.</td>
<td>Prognosis of Total Hip Replacement. Update of Results and Risk-Ratio Analysis for Revision and Re-revision from the Swedish National Hip Arthroplasty Register, 1979–2000</td>
<td>1346</td>
<td>10 years</td>
<td></td>
<td>97.8 %</td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>Acklin et al.</td>
<td>Nine-year results of Müller cemented titanium Straight Stems in total hip replacement. Arch Orthop Trauma Surg (2001); 121: 391–398</td>
<td>540</td>
<td>9 years</td>
<td></td>
<td>96.8% 98.4%</td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>Havinga et al.</td>
<td>Results with the M.E. Müller cemented Straight Stem total hip prosthesis. A ten-year historical cohort study in 180 women. J Arthroplasty 2001; 16(1): 33–36</td>
<td>180</td>
<td>10 years</td>
<td></td>
<td>94 %</td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>Räber et al.</td>
<td>Fifteen-year result of the Müller CoCrNiMo Straight Stem. Arch Orthop Trauma Surg (2002); 121: 38–42</td>
<td>112</td>
<td>15 years</td>
<td></td>
<td>88.1 %</td>
<td></td>
</tr>
</tbody>
</table>